
MAVEPAY, A NEW LIGHTWEIGHT PAYMENT SCHEME FOR

PEER TO PEER CURRENCY NETWORKS

SERGIO DEMIAN LERNER

Abstract. In this paper we propose a new payment scheme based on the

MAVE digital signature protocol, for use in peer to peer currency networks
based on a block chain. The proposed payment scheme requires less resources
for the users than Bitcoin and can be used to create a truly lightweight peer
to peer currency network that stands 700 payments/second, and 5 million new

user accounts/year, on an average home computer with an average Internet
connection, at a fixed cost per client of less than 13 USD/month (as of 2011,
electricity, bandwidth and PC amortization costs included, in the U.S.).

1. Introduction

Bitcoin is a decentralized electronic currency system proposed as an alternative
to current government-backed currencies [11]. It was created by Satoshi Nakamoto
in 2008 [7] along with the first reference implementation. Bitcoin protocol relies
on the public validation of transactions, and assumes every end-user will always
be able to handle the burden of validating every transaction. Nevertheless, Bitcoin
protocol was not specifically chosen to put end-user resources consumption down
to a minimum. Transactions messages are unnecessary long and the storage re-
quired is unnecessary high. Most notably, the choice of signature scheme (ECDSA)
favors short signatures over verification time (RSA signatures are much faster to
verify, although longer) [4]. This choices have imposed very tight limitations on the
maximum size of the network [1]. The key limiting factors are bandwidth usage,
chain size and CPU processing time. Protocol upgrades, as proposed numerous
times in forums, may put the limits a little forward, but cannot increase the net-
work capacity by an order of magnitude. CPU processing time limit imposed by
the chosen ECDSA curve is the harder to surpass, without redesigning the whole
protocol. There have been many proposals for micropayment systems that rely on
one time signatures (OTS) that rely on hash chains to lower the CPU consumption
requirement [9] for payees and payers. Nevertheless these protocols rely on a cen-
tral trusted authority both to issue money and to validate the signatures. Recently
the digital signature protocol MAVE-3 has been proposed [6]. We present a new
payment scheme based on MAVE-3 and extend the MAVE-3 signature to hold the
payload required to be applicable to a peer to peer currency network. We also re-
place the aggregator by competing miners, as in Bitcoin. MAVEPAY/MAVE-3 use
commitments to construct signatures. Commitment based ownership was proposed
in parallel to this work in [5], although that proposal is incomplete (it cannot effi-
ciently link transaction messages together and so it avoids dealing with the delay
attack or the command flooding attack).

Key words and phrases. Bitcoin P2P digital e-cash electronic currency.

1

Preliminary version – April 17, 2012



2 SERGIO DEMIAN LERNER

A general principle of an efficient free market is that it should provide consumers
with a variety of options from which they can choose the quality and price that
best suits their needs. This principle can be applied to P2P currency networks
as the Least Required Security (LRS), when we achieve lower costs (for the user
and for the network) for lower security. Instead of providing a digital signature
algorithm with a fixed key-length (e.g. ECDSA secp256k1) we provide a digital
signature algorithm with selectable security thresholds such that the lower the key
size, the lower the resource requirements for the network in terms bandwidth and
storage space. Users are persuaded of using the key size so the cost of breaking the
algorithm is higher than the funds stored. The incentive to use the least required
key-size is monetary, since transactions on accounts with higher key-sizes pay higher
fees because of their longer sizes.

Because each created account consumes resources, we want to keep the number
of created accounts to a minimum. We could easily extend MAVE-3 signatures to
allow simultaneously signing with multiple public keys, and so accept the simulta-
neous payment from multiple source accounts, but this would incentive the behavior
of having multiple accounts. Still, if a user wants to make a payment using money
from different accounts, payments can be first consolidated in a single account with
multiple payments.

Table 1 show a comparison between Bitcoin (in its current implementation) and
MAVE-3.

Table 1. Bitcoin and MAVE-3 comparison

Property Bitcoin MAVE-3
Maximum transactions per second (*1) 10 700
Average block confirmations per payment 6 at least 18
Underlying security ECDSA / SHA-2 truncated hash function
Fees in every message Yes No (*2)
Issue Payments during chain competition Yes No
Approximate client cost per month(*3) 13 USD 13 USD

*1 For an average home PC, using no more than 15% of CPU and 50% of
bandwidth, and replacing the hard drive not before 2 years.

*2 POW or similar defense required for some messages
*3 As of 2011, electricity, bandwidth and PC amortization costs in the U.S.

considered.

2. Key-sizes and the free market

Moore Law predicts the doubling of the processing power of users of the P2P
currency every two years, but it also predicts the doubling of the attackers capa-
bilities during the same period. A system that conforms to the LRS principle must
be able to allow users to increase account security gradually, allowing to establish
longer private key sizes to accommodate the growth in computing power. Bitcoin
clearly does not conform to the LRS principle, since it forces a 2 cents transaction to
use the same global resources than a 1000K coins transaction. To achieve the LRS
principle we want to enable a "free market" in terms of security. As each transaction

Preliminary version – April 17, 2012



3

pays a fee and implies a cost to the network to handle the transaction verification,
transfer and storage, then the ideal scheme would create a market where fees and
network cost are proportionally related, living a gap for miners revenue.

3. Multiple Digital Signature Algorithms

Any durable cryptocurrency must withstand the partial breakage of a crypto-
graphic algorithm used. In such case, user would gradually start moving the funds
from accounts whose security is questioned to accounts that rely on still unbro-
ken security. So at the same time we must provide user selectable key-sizes, we
also must provide different user-selectable digital signature algorithms. We must
allow users to choose from different hash functions to build the key chain and make
commitments, and also allow the use of other signature schemes with difference
space/time trade-offs.

4. Miners selfishness and the unprotected Bitcoin user

From the game-theoretic point of view, Bitcoin miners do not have a strong
incentive to protect end-users resources. In the long term miners may want to
protect the end-users in order to maintain the value of their savings in the virtual
coin, and the fixed cost of the infrastructure acquired for mining. But miners can at
any time sell their coins and start mining for other P2P currencies, so the incentive
is not strong enough. In the short term, they compete to collect fees, even if the
transactions included in a block impose a high workload on the end-users. If miners
were forced to store, transfer or compute much more data than end-users, then
they would choose transactions of shorter length and lower CPU usage. In Bitcoin
transactions are checked only once before the block mining process can start, and
the quality and quantity of the transactions included in a block does not alter the
winning probability significantly for a miner. The block size may affect slightly the
dispersion time of a block across the network, and so may reduce the chances of
a miner winning over a currently competing short-sized block. But currently this
is not a limiting factor on miners, since blocks travel fast, and the diameter of the
Bitcoin network is low. Also if a greater time is required to check a transaction,
then the time when the block mining can effectively begin is postponed in that same
amount. But transactions are checked only once, and each block mined requires a
hashing effort orders of magnitude higher than the time required for transaction
verification. So the CPU resources used in transaction verification during mining
have little effect on the block cost and almost no effect on miners revenue. To
create a free market in terms of security, we must build a system with the cheapest
transaction cost at choice. Also, an end-user should pay the least possible cost
to process other users transactions. In this paper we try to achieve these goals.
Section 10.6 shows how to build a free market on security.

5. Redefining MAVE-3 payload for MAVEPAY

MAVE-3 is a digital signature protocol that allows massive realtime verification
of signatures. The MAVE-3 digital signature protocol requires a semi-trusted third
party called aggregator. Aggregators periodically publish blocks, and are similar to
Bitcoin miners. A MAVE-3 signature consist of three commands (m1, m2 and m3)
each broadcast to the network. In MAVEPAY, we have to wait for confirmation of
each issued command, so the interaction to issue a MAVE-3 payment is:

Preliminary version – April 17, 2012



4 SERGIO DEMIAN LERNER

(1) Broadcasts m1 to the network
(2) Waits for m1 to be included in a block.
(3) Waits for some blocks to be mined for confirmation.
(4) Broadcasts m2.
(5) Waits for m2 to be included in a block.
(6) Waits for some blocks to be mined for confirmation.
(7) Broadcasts m3.
(8) Waits for m3 to be included in a block.
(9) Waits for some blocks to be mined for confirmation.

In a nutshell, message m1 serve as a commitment for m2, and m2 also serves
as a commitment to m3, which carry a private one time key. The second message,
m2, is the one that contains a payload, such as a signature and transaction specific
information.

We redefine the payload field in MAVE-3 to include the following information:

payload =< SA, f, R, [in_subcmmd_list][, out_subcmmd_list] >

in_subcmmd_list(i) = in_subcmmd(i, 1), .., in_subcmmd(i, NIS(i))
out_subcmmd_list(j) = out_subcmmd(j, 1), .., out_subcmmd(j, NOS(j))

Where:

R: the receivers account (or output account).
SA: the amount of money to subtract from the input account S.
f : the fee to pay for the command.
RA: the amount to be transferred to account R (RA = SA − f).

We define a single in_subcmmd:

• CLOSE_CMD = < CLOSE > .

We won’t define any out_subcmmd yet.
A command is considered reliably issued if some confirmation blocks have passed

after the command was included in the block and there is no competing alternate
block chain.

Note that m1 and m2 should be included in a block even if they do not imme-
diately pay fees to the block miner. The fee is only considered transferred after
m3 is included in a block and confirmed. The fee can be sent to miner of the last
command (m3) exclusively or split between the accounts of the 3 miners involved.
In the later case, the accounts of the previous miners should not be closed before
the payment is completed. To simplify the explanation, let assume the last miner
receives the payment. Let F be the account number of the miner that mined the
block containing m3.

In MAVEPAY each account is publicly identified by a N-byte binary number
that is the MAVE-3 public key, where N is the size of the digest of a secure hash
function (although it can be lower, if the digest is truncated).

Although MAVEPAY can be implemented to support scripts, in a manner similar
to Bitcoin, in this paper we avoid using scripts to make the description clearer, and
let us simply associate stored money with account numbers as traditional banking
accounts do. It also helps to make payment messages shorter.

As in Bitcoin, the client application takes care of account management in a way
that is transparent to the user, so the user can view his multiple accounts as a
single account, with an unified balance.

Preliminary version – April 17, 2012



5

MAVEPAY is build around the concept of a Transaction. A transaction is an
operation on an account. A transaction that transfers money from one account
to another is a Payment. In Bitcoin, each payment is a single command. In
MAVEPAY, a payment consist of three messages broadcast to the network. Each
of these messages is a Command. When a command is included in a mined block,
we say it has been issued. Also a Payment may include the payment of a fee to
one or more miners. Only the last command of a transaction actually executes
it. The previous commands only serve to associate a (still unpublished) key to a
particular payment so when the last command containing the key is issued there is
no doubt which is the right payment to execute. Counterfeit commands, although
they may contain a valid key, will not be accepted since a genuine and previously
issued association will exists.

A difference between Bitcoin and the MAVEPAY scheme presented here is that
we do not empty an account each time a transaction is issued from that account.
We specify the amount of money to be transferred. Doing so we save the space
required to specify a new account to hold the change.

One requirement for the scheme to be practical is that payments can be inter-
leaved: it should be possible to start a new payment while the previous payment
is being processed. Bitcoin already allows interleaving because payments require a
single command and by specifying that the change is transfered again to the input
account.

Because MAVEPAY payments span multiple blocks, we must explicitly design
for interleaving. The argument to support interleaving is stronger in MAVEPAY
since payments require longer confirmation periods than in Bitcoin. The reference
implementation of MAVE/MAVEPAY allows a single payment per account per
published block. It’s easy to surpass this limit by modifying the protocol to allow
multiple output addresses from a single payment. Then users can combine multiple
payments in a single transaction, with the additional benefit of amortized cost.

It’s important that the process of validating a payment can be carried out effi-
ciently. Processing a payment means linking commands to payments and linking
payments to accounts. To achieve this goal, the client application must main-
tain 3 data structures: TABLE_1, TABLE_2, and KEY RING as specified in
MAVE-3. For MAVEPAY the last table will be renamed ACCOUNTS and will
hold additional fields. ACCOUNTS has records < S, x, LK1 >, that matches each
account number S (MAVE-3 public key) with its amount x, where LK1 is the last
account key of the chain K1 associated with the account. The data structure should
allow efficient access by the key S.

To execute the payload, the procedure EXECUTE_TRANSACTION(m2,m3)
is called.

Subprocedure ADD_COINS_OR_CREATE_ACCOUNT(R,A)

(1) if the account S does not exists, add the record < S, A, S > to
ACCOUNTS.

(2) Otherwise, replace the record < R, x, k′ > in ACCOUNTS with the record
< R, x + A, k′ >.

Preliminary version – April 17, 2012



6 SERGIO DEMIAN LERNER

Subprocedure CHECK_FUNDS(m2,m3)

(1) Let x =< S, a, LK1 > be the record found on table ACCOUNTS with key
S.

(2) If a < SA then abort.
(3) Check the account is unblocked. If not, then abort.
(4) Check that RA ≤ SA. If not, then abort.

Subprocedure EXECUTE_TRANSACTION(m2,m3)

(1) Call CHECK_FUNDS(m2,m3)
(2) if in_subcmmd_list contains the subcommand CLOSE_CMD, remove the

record with key S from ACCOUNTS. Otherwise, replace the record <

S, x, LK1) > in ACCOUNTS with the record < S, x − SA, LK1 >.
(3) call ADD_COINS_OR_CREATE_ACCOUNT(R, RA)
(4) If f 6= 0 call ADD_COINS_OR_CREATE_ACCOUNT(F ,f).

To collect fees, each block can be signed by the aggregator with a classic dig-
ital signature algorithm or directly include the MAVEPAY address of the miners
account.

To enrich the free market of security choices, it is also possible to create and let
coexist MAVEPAY schemes of different key sizes and combine Bitcoin (or similar
schemes) with MAVE-3 signatures, allowing payments to flow seamlessly between
both type of accounts. Nevertheless, to achieve the benefits of a lightweight network,
fees for transactions using Bitcoin should be much higher than fees required for
MAVE-3. The distinction in fees allow users to switch between the schemes to
make payments depending on the requirements for the transaction or the accounts
involved.

As in Bitcoin, each user owns a number of accounts. In MAVEPAY, accounts
have a predefined maximum number of payments they can issue. When this limit
has been reached and a user wants to transfer money out of the account, the account
must be closed afterwards and never used again. Although this may seem to be a
restriction, there are multiple ways to overcome it:

(1) The maximum number of payments can set to be as high as 1 million if
you’re willing to invest one second of processing in the account creation
procedure.

(2) A new account can be created to receive funds from a single sender in a
single payment. This eliminates the risk that the account is being closed
while some other payment is issued to that account. The 1:1 correspondence
between payments and accounts is not a problem because account creation
is a cheap and private operation in MAVEPAY. Also, most online shops
already provide an unique payment addresses to each customer in order to
distinguish the payer and provide grater anonymization for the transaction.

(3) An account can be created to support multiple input payments up to a
published time where it will no longer receive payments.

(4) Persistent addresses can be created. In section 10.3, we’ll discuss how to
embed permanent user-friendly addresses or aliases in the block chain. A
persistent address can be redirected to a new account once an account is
closed.

Preliminary version – April 17, 2012



7

(5) Keys can be recycled, associating a new key chain with the same account,
as described in section 10.4.

6. Proof-of-work for commands

One of the key differences between Bitcoin and MAVEPAY is that Bitcoin has no
"free rides". Every transaction can (and ussualy must) pay a fee. In MAVEPAY,
we are required to create commands that cannot immediately pay fees. Then,
the broadcast and inclusion in the block of such commands involves a risk for the
network. An attacker may flood the network with dummy commands (spam) to
consume all bandwidth or to fill the block with them, preventing legitimate users for
making payments. To deter this attack, we suggest using a Proof-Of-Work (POW)
for some commands. By requiring such proof of work, we verify that a user has
invest at least a certain amount of computing time (e.g. one second) to create a
valid payment. At least the first command of a transaction should carry a proof of
work as an additional field (POW). Two alternative procedures are suggested for
POW:

The preimage POW: The command is appended a random nonce (nonce)
and the last block number seen (bn). The resulting message is called the
packet, which is the message ready to be broadcast. From a packet, any
client can compute the POW hash digest. The POW value is computed as
a hash of the packet. The work requirement is that the digest is prefixed
by some zero bits. The related attack is the partial preimage attack. This
is similar to how Bitcoin makes POWs. The packet broadcast has the
following properties:

• packet =< command, nonce, bn >

• tmp = Hash(command||bn)
• pow = Hash(tmp||nonce).
• pow is prefixed by some zero bits.

The Collision POW: The collision POW is based on the difficulty of finding
partial preimage collisions of two messages. The packet broadcast has the
following properties:

• packet =< command, nonce1, nonce2, bn >

• tmp = Hash(command||bn).
• pow1 = Hash(tmp||nonce1).
• pow2 = Hash(tmp||nonce2).
• pow1 and pow2 must be prefixed by some predefined number of zero

bits and share some number of following bits (the remaining bits can
differ).

The related attack is the partial collision attack. The advantage of the
Collision POW is that it requires the benevolent user to do a collision search
(or birthday attack) to efficiently create a POW with the less possible effort.
Birthday attacks require large amounts of memory and so preclude the use
of GPUs and other massively parallel computer architectures. An attacker
is therefore less capable of using these technologies to mount a command
flooding attack.

Note that packets are not entirely included in the block, only the command is.
The validation and special treatment of the POW value in packets serves only to

Preliminary version – April 17, 2012



8 SERGIO DEMIAN LERNER

prevent command flooding before the command gets into a block. Clients must
conform to the following protocol to ensure packets with less work are punished:

(1) When the client application is installed it measures the number of work
required for a POW that consumes one second, on average. If the preimage
POW is chosen, then a number of leading zero bits L is selected. If the
Collision POW is chosen, then a number of shared bits L is chosen.

(2) When a node receives a command from the network with POW value with
lower work than L, it is "slowed down" by re-transmitting it with low prob-
ability. On the contrary, commands with more work than L will be "accel-
erated" by being re-transmitted with higher probability.

(3) Miners reject to include in blocks commands with a POW that represents
a computation of less than a second in a standard computer.

If you want to let the big payment gateways (say PayPal) operate on a MAVE-
PAY based network without too much additional load, then you can modify the
requirement 3 so the miners can choose the required effort for a command to be
included in a block. Then you can let the payment gateways arrange contracts with
the top miners or mining pools to connect directly to them, and avoid using the
network as intermediary transport.

7. Transaction Validation

In Bitcoin each transaction has to be validated at least twice to protect it from
transaction flooding. First, when the transaction is broadcast across the network
and secondly, when the transaction appears in a mined block. As MAVEPAY
commands always carry a proof-of-work, we already have a measure to protect the
network against command flooding. We suggest not to validate commands when
they are broadcast by peers, and only check the proof-of-work of them.

8. Attacks specific to MAVEPAY

In addition to the possible attacks to MAVE-3, we describe attacks specific to
MAVEPAY.

8.1. Command Flooding Attack. The command flooding attack on MAVEPAY
is almost ineffective if commands carry a proof-of-work. Still, DoS of the MAVEPAY
network can be mounted by a botnet. The attack requires thousands of machines to
connect to the MAVEPAY network and broadcast association commands at once,
multiplying the temporary storage requirements of benevolent clients. This attack
cannot be easily distinguished from the normal operation. Still some practical
protective measures can be taken:

(1) In the client application, new input connections are assigned lower priority
than older ones. The number of new commands per second accepted in
a connection depends on the connection priority. As connections mature,
connection priority is risen.

(2) Each income connection is allowed to transmit almost the same amounts
of commands of different types per second (associations and finalization
commands). Statistics are maintained for each input connection to check
for deviations. A high deviation from the expected rates is an indicator of
flooding and so the connection is closed.

Preliminary version – April 17, 2012



9

8.2. The isolation Attack. As in the delay attack, a user that is isolated from
the network can be tricked into broadcasting the account key before the commands
are issued in the real block chain. This attack requires that the attacker has the
power to mine enough blocks in sequence to give the user the impression that his
commands are being issued. If the attacker has 1% of the the network computing
power, then he can build a chain 100 times slower than the network speed. If the
payment confirmation time is 60 minutes, then the attacker must isolate the user for
four days to allow the fake confirmation blocks to be received by the victim. This
attack can be deterred by requiring that the clients detect any performance drop
in the network hashing power, which is reflected in longer times between mining
blocks. If such sharp downfall is detected, then the client should stop issuing
payments until the situation normalizes. Other solution is that clients are always
connected with some “friendly” nodes, and those connections are authenticated.

8.3. The 51% Attack. As in Bitcoin, a user that manages to acquire 51% of the
hashing power of the network is able to disrupt the protocol. In Bitcoin, an attacker
can revert other user payments or double-spend his money. On MAVEPAY the
attacker is more powerful and can actually grab the money of any payment whose
commands have been rolled back. This is clearly more severe. Also in MAVEPAY
a command requires 3 times more confirmation blocks than in Bitcoin, for the same
security threshold. The implementor may reduce the interval of blocks accordingly
(say 1 block every 3 minutes, instead of 10) to compensate for the grater delay, but
this change also reduces to cost of a sustained attack. If we assume the attacker
has already build a super-computer to break Bitcoin or MAVEPAY, then both
attacks are equally costly. But if we assume that the attacker will hire CPU/GPU
time from some other source (e.g. Amazon Cloud Services) to acquire 51% of the
network computing power, then the attack on MAVEPAY would be cheaper since
less time will be required to replace the current block chain with an alternate chain
(3 minutes instead of 10 minutes). We conclude that, for a strength against this
attack similar to Bitcoin, MAVEPAY payments would take 3 times more to be
confirmed. For additional protective measures designed to decrease the incentive
for the attack, see section 10.1.

8.4. Eternal Storage of Transactions. One of the problems with Bitcoin is
that, in order to prevent transactions of being broadcast ad-infinitum, each client
maintains a hash table of cryptographic hashes of each transaction ever seen and
avoids reprocessing a transaction previously processed by checking every transaction
against this table. This protocol requires the eternal storage of transaction hashes.
In MAVEPAY each command that is transmitted on the network is encapsulated
in a packet. The packet specifies the last block number previously seen, and the
POW field is applied afterwards. Each client must discard packets whose referenced
block number is too old or too much ahead in the future. Whenever a client wants
to notify its peer that a new packet has arrived, is advertises the packet hash along
with the block number referenced in the packet. This notification procedure allows
them decide whether or not they want to accept it.

8.5. Malicious Miner Attack. Miners tend to be benevolent to the network.
They have invested time and money to build mining hardware to sustain a profitable
mining business. Miner’s earnings are received in the same virtual currency they
mine, though fees and predefined prizes. They have no incentive to disrupt the

Preliminary version – April 17, 2012



10 SERGIO DEMIAN LERNER

network, since a disruption is always followed by decrease in the exchange value
of the virtual coin. Nevertheless, a malicious attacker may try to mine and create
blocks that require too much bandwidth, computing power or storage to be widely
and timely accepted by the network. A sustained DoS attack can create a currency
crisis and a result in a run on the currency. To prevent the attack, the currency
protocol must limit the resources that a block can request. Bitcoin protocol limits
the number of signatures per transaction, and transactions per block. Since in
MAVEPAY account creations are more costly than payments, the protocol must
establish a limit on the number of account creations that a block can include.

9. Transaction Cancellation

As transactions are not atomic, it may be the case that a user wants to cancel
the transaction before is has been finished. The network has already invest some
effort in terms of broadcasting, checking and storing the transaction so cancellation
should not be free. One solution is that, at the beginning, transactions pay a
dynamically computed fee. The amount of the fee has to be calculated as an
average of the fees paid in the last mined blocks weighted by the message size. The
payment is taken from the input account and goes to the block miner of the first and
second issued commands, but this payment is deferred by T blocks. Each account
also holds a field blocked_coins that specifies the amount of money blocked by
fees of unfinished transactions. During the T -block time interval, whenever a client
processes a new command of type 2 in a block, the blocked_coins increases with the
computed average fee. When checking for funds, blocked_coins is subtracted from
the account balance, so the spendable amount actually decreases. If the transaction
is finished before T blocks have been mined, then blocked_coins is updated and
the fee specified in the transaction is processed as usual. If transaction of the type
1 and 2 commands (but not the type 3 command) have been issued and T blocks
have passed, clients can proceed with the automatic payment. Type 1 commands
are so small and require so little processing that they may be left exempted from
fees. One problem with this type of cancellation is that an account holding less
than the average fee will never be accepted for payment.

10. Improvements and Extensions

In this section we present improvements and extensions that can be added to
the core protocol. To implement these extensions the payment checking procedures
must be updated accordingly.

10.1. Multilevel keys and theft damage control. With enough monetary re-
sources, an attacker may be able to create an alternate forged chain faster than
the main chain. To maximize the profitability of the attack, the attacker would
create blocks where all the payments done in the genuine chain are redirected to
his own account. Even thought the cost of such attack increases with the length
of the forged chain, the profit from the attack would be huge, since all the money
from the accounts involved could be transferred. We must limit the profit from
such attack. By using periodic permanent checkpoints, the maximum chain length
that can be rolled back can be limited, but this limit may still not discourage the
attacker. We cannot prevent the 51% attack, but we can minimze the losses it can
cause by having different account keys, each one with a different maximum amount

Preliminary version – April 17, 2012



11

of money per transaction, or maximum amount of money that can be transferred
per time period. For example, with a single account key we may want to transfer
$ 10, and wait only a few confirmation blocks. If we do so, we’re exposed to the
risk of a 51% attack that rollsback the $ 10 payment and creates a $ 10K payment
to one of the attacker’s accounts using the key exposed. If we have two keys, one
for payments up to $ 10 and another for payments up to $10K, we’re affectively
reducing the incentive for the attack.

We will extend MAVEPAY with accurate damage control: the configuration of
multiple key chains, with increasing limiting amounts. The chains can be parallel
or tree-like. If they are parallel, the account record size increases, if we use a tree-
like chain (such as the K2 chain), the command type 2 size increases by the same
amount. A new out_subcmmd command is defined to create an extended account.

Another use for multilevel keys is account reconfiguration. Suppose we want to
allow each user to modify the behavior of the account such as adding another key
chain or changing the maximum allowed amounts. Reconfiguration brings a high
security risk, so it should have its own key chain.

• CREATE_ACCOUNT_CMD =
< CREATE_ACCOUNT, S, KC , limit_key_list >

• limit_key_list =< limit_key(1), ..., limit_key(lk) >

• limit_key(i) =< K(i), max(i) >

KC : is a key chain for account configuration. It allows to change the account
behaviors.

K(i): is a new key chain whose transfers are limited by max(1)
max(i): is the maximum amount of money that can be transferred with the

key of the chain that ends with K(i).

10.2. Blocking payments to an account. A blocked account is forbidden to
receive more payments. Because MAVEPAY accounts have a limited number of
payments they can make, they must be emptied at the last payment. At that time
the user may want to know exactly how much money the account is holding, without
the risk that the account receives money meanwhile. By blocking an account the
owner can check the balance. In the MAVEPAY payment protocol, when an account
is closed it gets automatically blocked. We may want to manually block the account
before we transfer money out of it. Another application of blocking is the creation
of time limited accounts. A time limited account has the property that after a
certain deadline, it is automatically blocked, without the need of interaction by the
owner. Time limited accounts can be used to accept payments from many senders
up to certain date.

To immediately block an account, we create a new command mb with format:

mb =< BLOCK, S, Kb >

Where Kb is the following account key of an account S for a specific key chain in
a multilevel key scheme, as described in the previous section. When a mb command
is issued, every client blocks the account S to be the destination of payments.

To create time limited accounts, we create a new extra input subcommand that
can appear in the field in_subcmmd_list, with format < BLOCK, Kb, bn >. Kb

is the following account key and bn is the block number when the account should
be blocked.

Preliminary version – April 17, 2012



12 SERGIO DEMIAN LERNER

10.3. Friendly Persistent Addresses. One disadvantage of the protocol de-
scribed so far is that addresses are not user friendly.

"2fd4e1c67a2d28fced849ee1bb76e7391b93eb12" is much hard to remember than
"Jerry_Smith". Also it would be desirable that such friendly addresses could last
forever, even if a certain account is closed. We can modify the protocol to allow
friendly persistent addresses with little overhead. In fact, by using aliases, we
improve the performance by reducing the size of messages. The idea is similar to
NameCoin [3, 2], but tightly coupled with the main chain. One option is to create
a new type of transaction that binds names to addresses but, since it won’t be a
payment, it cannot pay fees. To allow fees to be paid for binding aliases, we redefine
a type 2 command so that it can specify either an account number (MAVE-3 public
key) or an alias.

We define one new in_subcmmd :

UPDATE_ALIAS_CMD =
< UPDATE_ALIAS, opt_new_hash_address >

We define one new out_subcmmd:

NEW_ALIAS_CMD = < NEW_ALIAS, opt_new_friendly_name >

If the subcommand NEW_ALIAS_CMD is added to an out_subcmmd field,
then the new alias is created for the associated raw address R. If the subcom-
mand UPDATE_ALIAS_CMD is added to an in_subcmmd record, then the
alias associated with the address S is updated to redirect to the raw address
opt_new_hash_address. The embedding of bindings in commands of type 2 al-
lows the alias to keep working after the processing of a command of type 3 that
closes the account as long as the payments refer to the alias. We suggest using
this extension with multilevel keys, since the unauthorized reassignment of aliases
implies a high security risk for the user.

With a prefix to distinguish aliases from raw addresses, a payment can refer to
any combination of them.

We’ll show an example. Bob wants to send "Alice" the amount of money y. Bob
creates a command with payload:

payload =< y + f, f, ”Alice” >

We must note that if we do not need to create a readable user friendly addresses,
we can create arbitrary binary addresses. An alias as short as 8 bytes, allows 1019

unique addresses, that is more than enough.

10.4. Recycling an account. Accounts in MAVE have limited life, since keys in
the chain can run out. Suppose Alice has an account S with alias “Alice”. Suppose
Alice continuously receives and send payments from her account through the alias,
and the account is about to get closed because of lack of signing keys in the chain.

The first option is to create a new account Q, transfer the alias from S to Q,
block the account S, check to see how much money is left in the account S, and
transfer that money to the new account Q. A simpler option is to create a new
in_subcmmd that replaces the current last key in the chain with a new key that
was build from a new key chain.

UPDATE_KEY_CMD = < UPDATE_KEY, kc, new_lk1 >

Preliminary version – April 17, 2012



13

When the payment containing this subcommand is processed, the field Lk1 from
the table ACCOUNTS is replaced by new_lk1. The subcommand must include
the next valid key kc from the configuration key chain as defined in 10.1.

Still another option is to create a new identifier REMAINING that, when given
as SA field, specifies that the remaining money in the account must be transferred.

Now, Alice wants to close the account A, and transfer all funds to a new account
Q and preserve the alias. She creates the command with payload:

payload =< REMAINING, f, < UPDATE_ALIAS, Q >>

With any of these options, the alias "Alice" works effectively a virtual account
number that is always open.

10.5. Balance sheets. The idea of balance sheets (or checkpoints or snapshots)
was suggested to improve Bitcoin storage and reduce the initial delay for new
clients [8]. In Bitcoin each account record would require 80 bytes to store the ad-
dress plus scriptSig. Since each full Bitcoin transaction requires on average 459
bytes, and assuming each transaction creates a new address, the space required for
a balance sheet would be 17% of the block chain size. In MAVEPAY, the size of a
account record can be as short as 20 bytes, then a MAVEPAY balance size is only
25% of a Bitcoin balance.

One advantage of using balance sheets is that whole balance database can live in
RAM while the client application is online. The storage of the balance in RAM can
speed up account lookups and payments by at least a factor of 1000. But to take
full advantage of balance sheets we must also punish the use of multiple accounts
in favor of a few accounts per user (or a single account, at best). To encourage the
use of few accounts per user, we can:

(1) Create an specific subcommand to open a new account.
(2) Force the creation of accounts to pay a high fee, or a periodic fee to keep

the account open.
(3) Force accounts created by payments to be temporary.

10.6. MAVEPAY / Bitcoin Hybrid and fee rates. In this section we dis-
cuss the possibility to create an hybrid system MAVEPAY / Bitcoin. As both
schemes rely on miners, we can let them create blocks mixing Bitcoin transactions
and MAVE commands. Bitcoin transactions can be distinguished from MAVE
commands by special prefixes. Output addresses in MAVE-3 can be extended to
specify a Bitcoin scriptSig. Bitcoin output scripts can be extended to specify a
MAVE addresses. But to take advantage of the performance of MAVE and the
flexibility of Bitcoin we must encourage users to select the appropriate type of ac-
count. Accounts that requires maximum security (such as banks) could use Bitcoin
accounts, while all other users would use MAVEPAY accounts. One way to en-
courage the right selection is to adjust transaction fees according to the real cost of
verifying them, creating fee rates. Considering current technology and bandwidth
of an average user, we would need to give an incentive to use MAVEPAY accounts
in favor of Bitcoin. This could change if one day computers come with specialized
hardware to accelerate some cryptographic algorithms. We propose three different
schemes that can be used to provide fee rates: fee confiscation, command difficulty
and limited size blocks.

Preliminary version – April 17, 2012



14 SERGIO DEMIAN LERNER

10.6.1. Fee confiscation. In this scheme, part of the fees collected by a miner get
“confiscated”. When a command/transaction with fee f is included in a block, the
miner applies a predefined multiplier x to the fee f . The miner can only collect
x ∗ f and the rest is confiscated. The multiplier x is always lower or equal to 1.
The longer the message, the lower the multiplier. The slower the cryptographic
operations required by the transaction, the lower the multiplier.

As an example, if CPU usage was the only factor to consider to calculate the cost
of a transaction to the network, then a transaction which requires 100 times more
time to evaluate than other would have a multiplier that is 100 times lower. Because
miners always choose the transactions that give them the higher reward, then users
would be forced to compensate the punishment of confiscation by increasing the
fees by the same factor for those commands.

CPU usage is not the only factor to consider when calculating the cost of a
transaction to the network as a whole. All expensive resources already described
must be considered to design a realistic function that takes into account average
costs and tries to anticipate how those costs will evolve in the future.

As fees are reduced by the multipliers, is necessary to restore the remaining
money (1 − x) ∗ f to the network to avoid destroying it. One possible solution is
to accumulate all the remaining fees and setup a price to be awarded to the miner
of the following block. To prevent the miner from trying to delay broadcasting a
block in order to mine the next, we can setup the price to be awarded to the miner
of some blocks ahead (e.g. ten blocks).

This automatic prize generation may give an incentive for the casual miner not
to include so many transactions, since a fixed reward (higher than the transaction
fees) may exist. But since including transactions in a block requires very little
resources, here is no reason not to include all known transaction and collect all
possible fees. For the miners who have a high percentage of network computing
power (like mining pools) obviously no such incentive exists, since including less
transaction imply being awarded less money as prices in following mined blocks.

If a payment is sent to an account that was not previously created, a higher fee
must be paid for the additional storage required. One alternative is that accounts
created by payments (not explicitly pre-created by CREATE_ACCOUNT_CMD)
are temporary (e.g. money is kept only for a month). Before the period finishes,
the owner must transfer the money to a pre-created account or pay a special fee for
the creation, otherwise the account contents is returned to the network as a miner’s
prize.

10.6.2. Command difficulty. We can force the miner to actually work more depend-
ing on the commands included in the block. Each command, depending on the type
and length, would add difficulty to the target difficulty of the block. The ratio be-
tween difficulties of different commands would be set by the network designers to
match the actual verification costs to the network.

10.6.3. Limited size blocks. If block size is limited by design and the block chain
is generally “saturated”, then miners have an incentive to choose the smaller com-
mands that give them higher fees. Also it is possible to decrease the maximum
number of allowable commands per block depending on the type of the commands
included. The problem with this scheme is that blocks sizes vary and it’s difficult

Preliminary version – April 17, 2012



15

to artificially force miners to leave commands out of blocks, even by dynamically
setting the maximum block size.

10.7. Payer identification. One of the benefits of a 1:1 relation between pay-
ments and accounts is that, in case of a user that simultaneously receives multiple
payments, payers are identified by their destination account. In Bitcoin, the script
has payload to include payer identification strings. In MAVE we can also extend
the payload of a message of type 2 to include a payer identification string. The
string, along with the transaction message will be cached by the network until the
next balance sheet is ready.

11. Resource Usage

In MAVEPAY each payment requires 3 commands. We will check the space
requirements for the cheapest MAVEPAY scheme that is still secure for every day
use as of 2012.

Assumptions:

(1) For account keys, a truncated HASH with 80 bits digest is used (N=10).
(2) An alias system with an average alias of 8 bytes (64 bit address space)
(3) A truncated hash commitment with M=10 (80 bits of pre-image security)
(4) Amounts are expressed as a compressed unsigned int, using special prefixes

for extending the field size.
(5) Average amounts requires 4 byte unsigned int.
(6) Each identifier consumes a single byte
(7) Field separators consume a single byte, and are included only for non-self

delimiting fields.

Then the following table summarizes the average sizes of commands for MAVE-
PAY:

• Type 1: 10+1=11 bytes (1 identifier, 1 commitment)
• Type 2: 8+20+20+10+1=63 bytes (2 amounts, 2 aliases, 2 account keys,

1 commitment, 1 identifier)
• Type 3: 1+10=11 bytes (1 identifier, 1 account key)

The average payment size for MAVEPAY (omitting other headers such as version
information) is therefore 11+63+11=85 bytes. This is less than 19% of the average
Bitcoin payment size, which is 459 bytes. In other words, MAVEPAY can support
almost 6 times more transactions for the same bandwidth and storage space. This
figure does not take into account possible optimizations to the Bitcoin protocol to
compress each transaction.

In MAVEPAY each payment requires the computation of 3 hash digests. In a
modern computer the time required to compute a SHA-1 digest from a 40 byte
binary string is approximately 2 uS, so 3 digests takes 6 uS. Verifying a ECDSA
signature takes on the same computer 8 ms (more than a thousand times more).
The MAVEPAY bottleneck is not hashing, but accessing and updating the tables
(TABLE_1, TABLE_2 and ACCOUNTS). MAVEPAY requires approximately
10 look-ups per payment, instead of 3 look-ups required by Bitcoin. But TABLE_1
and TABLE_2 should be relatively small, so these accesses should not be taken
into account.

Preliminary version – April 17, 2012



16 SERGIO DEMIAN LERNER

Now we’ll estimate the maximum number of transactions per second MAVEPAY
withstand assuming an average home computer.

We explore only one setting for the client: balance-in-RAM. In this setting, the
whole account balance for the network is stored in RAM while the client is online.
In balance-on-HDD setting, the account balance is stored in a hard drive. This
distinction is appropriate since the time required to process a payment is much
lower when we can assume the whole network balance is stored in RAM.

11.1. The cost of 1K payments/second. To achieve 1K payments/second we
must make use of the all the described enhancements in section 10. To compute
the cost of a manage a MAVEPAY node we have assumed:

Typical US monthly residential rate: 0.11 USD per KW/h
Average Computer Power consumption: 100 Watts
Desktop personal computer cost: 1000 USD
PC amortization time: 4.5 years
Available bandwidth: 1 Mbps
Average monthly cost of Internet in US at 1Mbps: 3.3 USD
Maximum MAVEPAY CPU usage: 15%
Maximum MAVEPAY bandwidth usage: 50%
Degradation/Failure due to MAVEPAY use: 50%
Monthly amortization cost due to MAVEPAY use: 9.26 USD
Average alias size: 10 bytes
Average account key size: 12 bytes (weighted average of key sizes of low

risk (10 bytes) and high risk (22 bytes) accounts at a 5:1 ratio)
Setting: Balance-on-RAM
Initial accounts in existence: 100,000
Accounts created a year: 5 M
Payments per second: 1000 payments/second

Taking into account these assumptions, the cost to run a MAVEPAY node is
13.17 USD/month.

It it difficult to estimate the initial number of accounts and the number of ac-
counts each user will create, since it depends on the fee rates established for account
creation and the need of anonymity. During 2011, Bitcoin had between 30k-60k
active users [10]. The total number of casual users during 2011 (while some may
be inactive) is approximately 740K. If each active user were the owner of a sin-
gle account, then the whole balance sheet would be no longer than 3Mb. The
balance sheet for ten million users fits into 500 Mb. For comparison, the current
cost of Bitcoin at only 10 payments/second is 12.28 USD/month. Achieving 1000
payments/second in Bitcoin by stacking home PCs would probably cost over 500
USD/month (this amount is lower if the user can optimize power consumption as
he builds a small data center or using specialized hardware to speed up ECDSA
operations).

11.2. Anonymity vs Scalability. In MAVEPAY, anonymity is punished in favor
of scalability. A user that wants to stay completely anonymous requires transac-
tions that specify both input and output addresses in raw form. Such users will
not use the alias system. Payments that specify raw addresses tend to be longer.
Also each payment would need to use money from multiple input accounts, using

Preliminary version – April 17, 2012



REFERENCES 17

consolidation, since a different account would be used for each payment received.
Therefore such payments would pay higher fees.

11.3. Beyond 1K payments/second. Moore’s law predict the doubling of tran-
sistor density every two years, so both RAM size and CPU power increases accord-
ingly. Kryder’s Law predicts magnetic disk areal storage density doubles approx-
imately every 18 months. Residential link bandwidth doubles every 18 months.
Also, desktop computers are replaced every 4.5 years on average. This facts imply
that every time the user replaces his computer every 4.5 years, he has at least mul-
tiplied by 4 the main computer resources required by MAVEPAY. Since we assume
the number of MAVEPAY accounts will increase steadily, the balance database in-
creases over time. We can safely assume a 2x increase in accounts created (the user
base) every 4 years. The payments processing capacity can safely double every 18
months, since is mainly restricted by available bandwidth.

12. Conclusion

We have presented MAVEPAY, a new class of payment scheme that, like Bit-
coin, relies on the concept of the proof-of-work block chain. We have shown how
MAVEPAY design differs from Bitcoin, and analyzed pros and cons of each design.
MAVEPAY design allows much better scalability and greater performance, since it
relies on faster cryptographic constructions. Also we have shown that MAVEPAY
require greater care for confirmation blocks, and is exposed to greater danger from
block chain rollback attacks. We have shown how to create a free market where ac-
counts holding higher amounts of money pay higher fees to achieve higher security
threshold (the Least Required Security), can reduce the fixed costs of operation for
the average clients. We have described enhancements (section 10), such as account
creation fees, periodic "balance sheet" cleanups and persistent aliases, that allows us
to create a truly lightweight peer to peer currency network that process up to 700
payments per second, and 5 million new users a year, with current home computer
technology, and an average Internet connection.

We summarize the properties of MAVEPAY:

(1) Interleaved payments
(2) Cancellable payments
(3) User-friendly account aliases
(4) Protection against the Delay Attack
(5) Protection against the O(c2) Attack
(6) Protection against Command Flooding Attack
(7) Protection against the Isolation Attack
(8) Protection against the 51% Attack
(9) Protection against Eternal Storage of transactions

The first 5 properties are given by MAVE-3. The last properties were discussed
in section 8.

References

[1] ? Bitcoin scalability. Apr. 2012. url: https : / / en . bitcoin . it / wiki /

Scalability.
[2] ? Dot-BIT project. Jan. 2012. url: http://dot-bit.org/Main_Page.
[3] ? Namecoin. Jan. 2012. url: https://en.bitcoin.it/wiki/Namecoin.

Preliminary version – April 17, 2012



18 REFERENCES

[4] VAMPIRE Virtual Applications and Implementations Research Lab. eBACS:

ECRYPT Benchmarking of Cryptographic Systems. Apr. 2012. url: http:

//bench.cr.yp.to.
[5] Ark. Solving the symmetric key distribution problem for digital signatures us-

ing the BitCoin peer-to-peer infrastructure. July 2011. url: http://archimerged.

wordpress.com/2011/07/14/solving-the-symmetric-key-distribution-

problem-for-digital-signatures-using-the-bitcoin-peer-to-peer-

infrastructure/.
[6] Sergio Demian Lerner. MAVE: new lightweight digital signature protocols for

massive verifications. Apr. 2012. url: http://bitslog.files.wordpress.

com/2012/04/mave.pdf.
[7] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”. In: ().

url: http://fastbull.dl.sourceforge.net/project/bitcoin/Design\

%20Paper/bitcoin.pdf/bitcoin.pdf.
[8] Piuk. A proposal for a scalable blockchain. Nov. 2011. url: https://bitcointalk.

org/index.php?topic=52859.0.
[9] R. L. Rivest and A. Shamir. “PayWord and MicroMint: Two Simple Micro-

payment Schemes”. In: Proc. 4th International Security Protocols Conference.
1996, pp. 69–87.

[10] RowIT. RowIT - Bitcoin Peer to Peer Network Status. Jan. 2012. url: http:

//bitcoinstatus.rowit.co.uk/.
[11] The Bitcoin wiki. The Bitcoin wiki. Apr. 2012. url: https://bitcoin.it.

E-mail address: sergiolerner@certimix.com, sergiolerner@pentatek.com

Preliminary version – April 17, 2012


